Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Phys Med Biol ; 69(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38484398

RESUMO

Objective.In brachytherapy, deep learning (DL) algorithms have shown the capability of predicting 3D dose volumes. The reliability and accuracy of such methodologies remain under scrutiny for prospective clinical applications. This study aims to establish fast DL-based predictive dose algorithms for low-dose rate (LDR) prostate brachytherapy and to evaluate their uncertainty and stability.Approach.Data from 200 prostate patients, treated with125I sources, was collected. The Monte Carlo (MC) ground truth dose volumes were calculated with TOPAS considering the interseed effects and an organ-based material assignment. Two 3D convolutional neural networks, UNet and ResUNet TSE, were trained using the patient geometry and the seed positions as the input data. The dataset was randomly split into training (150), validation (25) and test (25) sets. The aleatoric (associated with the input data) and epistemic (associated with the model) uncertainties of the DL models were assessed.Main results.For the full test set, with respect to the MC reference, the predicted prostateD90metric had mean differences of -0.64% and 0.08% for the UNet and ResUNet TSE models, respectively. In voxel-by-voxel comparisons, the average global dose difference ratio in the [-1%, 1%] range included 91.0% and 93.0% of voxels for the UNet and the ResUNet TSE, respectively. One forward pass or prediction took 4 ms for a 3D dose volume of 2.56 M voxels (128 × 160 × 128). The ResUNet TSE model closely encoded the well-known physics of the problem as seen in a set of uncertainty maps. The ResUNet TSE rectum D2cchad the largest uncertainty metric of 0.0042.Significance.The proposed DL models serve as rapid dose predictors that consider the patient anatomy and interseed attenuation effects. The derived uncertainty is interpretable, highlighting areas where DL models may struggle to provide accurate estimations. The uncertainty analysis offers a comprehensive evaluation tool for dose predictor model assessment.


Assuntos
Braquiterapia , Aprendizado Profundo , Masculino , Humanos , Braquiterapia/métodos , Próstata , Incerteza , Reprodutibilidade dos Testes , Estudos Prospectivos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Med Phys ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456608

RESUMO

BACKGROUND: Electromagnetic tracking (EMT) systems have proven to be a valuable source of information regarding the location and geometry of applicators in patients undergoing brachytherapy (BT). As an important element of an enhanced and individualized pre-treatment verification, EMT can play a pivotal role in detecting treatment errors and uncertainties to increase patient safety. PURPOSE: The purpose of this study is two-fold: to design, develop and test a dedicated measurement protocol for the use of EMT-enabled afterloaders in BT and to collect and compare the data acquired from three different radiation oncology centers in different clinical environments. METHODS: A novel quality assurance (QA) phantom composed of a scaffold with supports to fix the field generator, different BT applicators, and reference sensors (sensor verification tools) was used to assess the precision (jitter error) and accuracy (relative distance errors and target registration error) of the EMT sensor integrated into an afterloader prototype. Measurements were repeated in different environments where EMT measurements are likely to be performed, namely an electromagnetically clean laboratory, a BT suite, an operating room, and, if available, a CT suite and an MRI suite dedicated to BT. RESULTS: The mean positional jitter was consistently under 0.1 mm across all measurement points, with a slight trend of increased jitter at greater distances from the field generator. The mean variability of sensor positioning in the tested tandem and ring gynecological applicator was also below 0.1 mm. The tracking accuracy close to the center of the measurement volume was higher than at its edges. The relative distance error at the center was 0.2-0.3 mm with maximum values reaching 1.2-1.8 mm, but up to 5.5 mm for measurement points close to the edges. In general, similar accuracy results were obtained in the clinical environments and in all investigated institutions (median distance error 0.1-0.4 mm, maximum error 1.0-2.0 mm), however, errors were found to be larger in the CT suite (median distance error up to 1.0 mm, maximum error up to 3.6 mm). CONCLUSION: The presented quality assessment protocol for EMT systems in BT has demonstrated that EMT offers a high-accuracy determination of the applicator/implant geometry even in clinical environments. In addition to that, it has provided valuable insights into the performance of EMT-enabled afterloaders across different radiation oncology centers.

3.
Med Phys ; 51(3): 2144-2154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308854

RESUMO

BACKGROUND: In-vivo source tracking has been an active topic of research in the field of high-dose rate brachytherapy in recent years to verify accuracy in treatment delivery. Although detection systems for source tracking are being developed, the allowable threshold of treatment error is still unknown and is likely patient-specific due to anatomy and planning variation. PURPOSE: The purpose of this study was to determine patient and catheter-specific shift error thresholds for in-vivo source tracking during high-dose-rate prostate brachytherapy (HDRPBT). METHODS: A module was developed in the previously described graphical processor unit multi-criteria optimization (gMCO) algorithm. The module generates systematic catheter shift errors retrospectively into HDRPBT treatment plans, performed on 50 patients. The catheter shift model iterates through the number of catheters shifted in the plan (from 1 to all catheters), the direction of shift (superior, inferior, medial, lateral, cranial, and caudal), and the magnitude of catheter shift (1-6 mm). For each combination of these parameters, 200 error plans were generated, randomly selecting the catheters in the plan to shift. After shifts were applied, dose volume histogram (DVH) parameters were re-calculated. Catheter shift thresholds were then derived based on plans where DVH parameters were clinically unacceptable (prostate V100 < 95%, urethra D0.1cc > 118%, and rectum Dmax > 80%). Catheter thresholds were also Pearson correlated to catheter robustness values. RESULTS: Patient-specific thresholds varied between 1 to 6 mm for all organs, in all shift directions. Overall, patient-specific thresholds typically decrease with an increasing number of catheters shifted. Anterior and inferior directions were less sensitive than other directions. Pearson's correlation test showed a strong correlation between catheter robustness and catheter thresholds for the rectum and urethra, with correlation values of -0.81 and -0.74, respectively (p < 0.01), but no correlation was found for the prostate. CONCLUSIONS: It was possible to determine thresholds for each patient, with thresholds showing dependence on shift direction, and number of catheters shifted. Not every catheter combination is explorable, however, this study shows the feasibility to determine patient-specific thresholds for clinical application. The correlation of patient-specific thresholds with the equivalent robustness value indicated the need for robustness consideration during plan optimization and treatment planning.


Assuntos
Braquiterapia , Neoplasias da Próstata , Masculino , Humanos , Próstata , Estudos Retrospectivos , Dosagem Radioterapêutica , Neoplasias da Próstata/radioterapia , Cateteres , Planejamento da Radioterapia Assistida por Computador
4.
Brachytherapy ; 23(2): 165-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38281894

RESUMO

PURPOSE: To use quantities measurable during in vivo dosimetry to build unique channel identifiers, that enable detection of brachytherapy errors. MATERIALS AND METHODS: Treatment plan of 360 patients with prostate cancer who underwent high-dose-rate brachytherapy (range, 16-25 catheters; mean, 17) were used. A single point virtual dosimeter was placed at multiple positions within the treatment geometry, and the source-dosimeter distance and dwell time were determined for each dwell position in each catheter. These values were compared across all catheters, dwell position by dwell position, simulating a treatment delivery. A catheter was considered uniquely identified if, for a given dwell position, no other catheters had the same measured values. The minimum number of dwell positions needed to identify a specific catheter and the optimal dosimeter location uniquely were determined. The radial (r) and vertical (z) dimensions of the source-dosimeter distance were also examined for their utility in discriminating catheters. RESULTS: Using a virtual dosimeter with no uncertainties, all catheters were identified in 359 of the 360 cases with 9 dwell position measurements. When only the dwell time were measured, all catheters were uniquely identified after 1 dwell position. With a 2-mm spatial accuracy (r,z), all catheters were identified in 94% of the plans. Simultaneous measurement of source-dosimeter distance and dwell time ensured full catheter identification in all plans ranging from 2 to 6 dwell positions. The number of dwell positions needed to uniquely identify all catheters was lower when the distance from the implant center was higher. CONCLUSIONS: The most efficient fingerprinting approach involved combining source-dosimeter distance (i.e., source tracking) and dwell time. The further the dosimeter is placed from the center of the implant the better it can uniquely identify catheters.


Assuntos
Braquiterapia , Dosimetria in Vivo , Masculino , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Imagens de Fantasmas , Cateteres , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Med Phys ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295013

RESUMO

BACKGROUND: The interest of using fiber Bragg gratings (FBGs) dosimeters in radiotherapy (RT) lies in their (i) microliter detection volume, (ii) customizable spatial resolution, (iii) multi-point dose measurement, (iv) real-time data acquisition and (v) insensitivity to Cherenkov light. These characteristics could prove very useful for characterizing dose distributions of small and nonstandard fields with high spatial resolution. PURPOSE: We developed a multi-point FBGs dosimeter customized for small field RT dosimetry with a spatial resolution of ∼1 mm. METHODS: The 3 cm-long multi-point dosimeter is made by embedding a 80 µ m $\umu{\rm {m}}$ silica fiber containing an array of thirty (30) co-located ∼ 1 mm-long fs-written FBGs inside a plastic cylinder with an UV curing optical adhesive. With its higher thermal expansion coefficient, the plastic cylinder increases the sensitivity of the dosimeter by stretching the fiber containing the FBGs when the temperature rises slightly due to radiation energy deposition. Irradiations (2000 MU at 600 MU/min) were performed with a Varian TrueBeam linear accelerator. RESULTS: The dose profile of a 2 × 2 cm2 6 MV beam was measured with a mean relative difference of 1.8% (excluding the penumbra region). The measured output factors for a 6 MV beam are in general agreement with the expected values within the experimental uncertainty (except for the 2  × $\,\times $ 2 cm2 field). The detector response to different energy of photon and electron beams is within 5% of the mean response (0.068 ± 0.002 pm/Gy). The calorimeter's post-irradiation thermal decay is in agreement with the theory. CONCLUSIONS: An energy-independent small field calorimeter that allows dose profile and output factor measurements for RT using FBGs was developed, which, to our knowledge, has never been done before. This type of detector could prove really useful for small field dosimetry, but also potentially for MRI-LINAC since FBGs are insensitive to magnetic fields and for FLASH since FBGs have been used to measure doses up to 100 kGy.

6.
Med Phys ; 51(1): 694-706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37665982

RESUMO

PURPOSE: A joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs). ACQUISITION AND VALIDATION METHODS: Five test cases are developed: (1) a single model 6711 125 I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16 mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within ∼2.5% and global agreement was ∼2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and ∼20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5. DATA FORMAT AND USAGE NOTES: Dose distributions for each set of MC and TPS calculations are available online (https://doi.org/10.52519/00005) along with input files and all other information necessary to repeat the calculations. POTENTIAL APPLICATIONS: These data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.


Assuntos
Braquiterapia , Neoplasias Oculares , Melanoma , Humanos , Dosagem Radioterapêutica , Melanoma/radioterapia , Radiometria , Neoplasias Oculares/radioterapia , Método de Monte Carlo , Água , Planejamento da Radioterapia Assistida por Computador
7.
Brachytherapy ; 23(1): 64-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37806788

RESUMO

PURPOSE: An electromagnetic tracking device (EMT) has been integrated in an HDR 3D ultrasound guidance system for prostate HDR. The aim of this study was to compare the efficiency of HDR workflows with and without EM tracking. METHODS AND MATERIALS: A total of 58 patients with a 15 Gy HDR prostate boost were randomized in two arms and two operation room (OR) procedures using: (1) the EMT investigational device, and (2) the Oncentra prostate system (OCP). OR times were compared for both techniques. RESULTS: The overall procedure median time was about 20% shorter for EMT (63 min) compared to OCP (79 min). The US acquisition and contouring was longer for OCP compared to EMT (23 min vs. 16 min). The catheter reconstruction's median times were 23 min and 13 min for OCP and EMT respectively. For the automatic reconstruction with EMT, 62% of cases required no or few manual corrections. Using the EM technology in an OR environment was challenging. In some cases, interferences or the stiffness of the stylet introduced errors in the reconstruction of catheters. The last step was the dosimetry with median times of 11 min (OCP) and 15.5 min (EMT). Finally, it was observed that there was no learning curve associated with the introduction of this new technology. CONCLUSIONS: The EMT device offers an efficient solution for automatic catheter reconstruction for HDR prostate while reducing the possibility of mis-reconstructed catheters caused by issues of visualization in the US images. Because of that, the overall OR times was shorter when using the EMT system.


Assuntos
Braquiterapia , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Cateteres
8.
Med Phys ; 51(2): 799-808, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127342

RESUMO

BACKGROUND: Electromagnetic tracking (EMT) has been researched for brachytherapy applications, showing a great potential for automating implant reconstruction, and overcoming image-based limitations such as contrast and spatial resolution. One of the challenges of this technology is that it does not intrinsically share the same reference frame as the patient's medical imaging. PURPOSE: To present a novel phantom that can be used for a comprehensive quality assurance (QA) program of brachytherapy EMT systems and use this phantom to validate a novel applicator-based registration method of EMT and image reference frames for gynecological (GYN) interstitial brachytherapy. MATERIALS AND METHODS: Eleven 6F-catheters (20 cm long), one 6F round tip catheter (29.4 cm long) and a tandem and ring gynecological applicator (Elekta, CT/MR 60°, 40 mm long tandem, 30 mm diameter ring) were placed in a rigid custom-made phantom (Elekta Brachytherapy, Veenendaal, The Netherlands) to reconstruct their geometry using a five-degree of freedom EMT sensor attached to an afterloader's check cable. All EMT reconstructions were done in three different environments: disturbance free (no metal nearby), computed tomography (CT)-on-rails brachytherapy suite and magnetic resonance imaging (MRI) brachytherapy suite. Implants were placed parallel to a magnetic field generatorand were reconstructed using two different acquisition methods: step-and-record and continuous motion. In all cases, the acquisition is performed at a rate of approximately 40 Hz. A CT scan of the phantom inside a water cube was obtained. In the treatment planning system (TPS), all catheters in the CT images were manually reconstructed and the applicator reconstruction was achieved by manually placing its solid 3D model, found in the applicator library of the TPS. The Iterative Closest Point and the Coherent Point Drift algorithms were used, initialized with four known points, to register both EMT and CT scan reference frames using corresponding points from the EMT and CT based reconstructions of the phantom, following three approaches: one gynecological applicator, four interstitial catheters inside four calibration plates having an S-shaped path, and four 5 mm diameter ceramic marbles found in each of the four calibration plates. Once registered, the registration error (perpendicular distance) was computed. RESULTS: The absolute median deviation from the expected value for EMT measurements in the disturbance free environment, CT-on-rails brachytherapy suite, and MRI-brachytherapy suite are 0.41, 0.23, and 0.31 mm, respectively, while for the CT scan it is 0.18 mm. These values significantly lie below the sensor's expected accuracy of 0.70 mm (p < 0.001), suggesting that the environment did not have a significant impact on the measurements, given that care is taken in the immediate surroundings. In all three environments, the two acquisitions and three registration approaches have mean and median registration errors that lie at or below 1 mm, which is lower than the clinical acceptable threshold of 2 mm. CONCLUSIONS: The novel phantom allowed to successfully evaluate the accuracy of EMT-based reconstructions of catheters and a GYN tandem and ring applicator in different clinical environments. A registration method based only on the applicator geometry, reconstructed withan EMT sensor and the TPS solid applicator library, was validated and shows clinically acceptable accuracy, comparable to CT-based reconstruction but within a few minutes. Since the applicator is also visible in MRI, this method could potentially be used in clinics in an EMT-MR interstitial GYN brachytherapy workflow.


Assuntos
Braquiterapia , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Fenômenos Eletromagnéticos , Braquiterapia/métodos
9.
Med Phys ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043067

RESUMO

BACKGROUND: Complex intracavity and interstitial (IC/IS) applicators, such as the Venezia applicator, can improve the HR-CTV coverage while adequately protecting organs at risk in the treatment of cervical cancer with high-dose-rate (HDR) brachytherapy. Although the Venezia applicator offers more choice for catheter selection, commercially available catheter and dose optimization algorithms are still missing for complex applicators. Moreover, studies on catheter and dose optimization for IC/IS implants in the treatment of cervical cancer are still limited. PURPOSE: This work aims to combine a GPU-based multi-criteria optimization (gMCO) algorithm with a sparse catheter (SC) optimization algorithm for the Venezia applicator. METHODS: Fifty-eight cervical cancer patients who received 28 Gy in 4 fx of HDR brachytherapy with the Venezia applicator (combination to external beam radiation therapy) are retrospectively revisited. The modelization of the applicator is done by virtually reconstructing all the IS catheters passing through the ring. Template catheters are reconstructed using an in-house python script. To perform simultaneous MCO and SC optimization (SC+MCO), the objective function includes aggregated dose objectives in a weighted sum and a group sparsity term that individually penalizes the contribution of IS catheters. Plans generated with the SC+MCO algorithm are compared with plans generated with MCO using clinical catheters (CC+MCO) and the clinical plans (CP). The EMBRACE II soft constraints (planning aims) and hard constraints (limits for prescribed dose) are used as plan evaluation criteria. RESULTS: CC+MCO gives the most important gain with an increase up to 20.7% in meeting all EMBRACE II soft constraints compared with CP. The SC+MCO algorithm (adding catheter optimization to MCO) provides a second order increase (up to 12.1% with total acceptance rate of 60.3% or 35/58) in the acceptance rate versus CC+MCO (total increase of 32.8% vs. CP). Acceptance rate in EMBRACE II hard constraints is 98.3% (57/58) for both CC+MCO and SC+MCO versus 91.4% (53/58) for CP. The median SC+MCO optimization time is 11 s to generate a total of 5000 Pareto-optimal plans with different catheter configurations (position and number) for each fraction. CONCLUSIONS: Simultaneous catheter and MCO optimization is clinically feasible for HDR cervical cancer brachytherapy using the Venezia applicator. Clinical catheter configurations could be improved and/or the catheter number could be reduced without decreasing plan quality using SC+MCO compared with the CP.

10.
Phys Med Biol ; 68(23)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863069

RESUMO

Monte Carlo (MC) dose datasets are valuable for large-scale dosimetric studies. This work aims to build and validate a DICOM-compliant automated MC dose recalculation pipeline with an application to the production of I-125 low dose-rate prostate brachytherapy MC datasets. Built as a self-contained application, the recalculation pipeline ingested clinical DICOM-RT studies, reproduced the treatment into the Monte Carlo simulation, and outputted a traceable and durable dose distribution in the DICOM dose format. MC simulations with TG43-equivalent conditions using both TOPAS andegs_brachyMC codes were compared to TG43 calculations to validate the pipeline. The consistency of the pipeline when generating TG186 simulations was measured by comparing simulations made with both MC codes. Finally,egs_brachysimulations were run on a 240-patient cohort to simulate a large-scale application of the pipeline. Compared to line source TG43 calculations, simulations with both MC codes had more than 90% of voxels with a global difference under ±1%. Differences of 2.1% and less were seen in dosimetric indices when comparing TG186 simulations from both MC codes. The large-scale comparison ofegs_brachysimulations with treatment planning system dose calculation seen the same dose overestimation of TG43 calculations showed in previous studies. The MC dose recalculation pipeline built and validated against TG43 calculations in this work efficiently produced durable MC dose datasets. Since the dataset could reproduce previous dosimetric studies within 15 h at a rate of 20 cases per 25 min, the pipeline is a promising tool for future large-scale dosimetric studies.


Assuntos
Braquiterapia , Radioisótopos do Iodo , Masculino , Humanos , Dosagem Radioterapêutica , Método de Monte Carlo , Próstata , Algoritmos , Planejamento da Radioterapia Assistida por Computador , Radiometria
11.
J Appl Clin Med Phys ; 24(12): e14150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37731203

RESUMO

PURPOSE: To evaluate the performance of an electromagnetic (EM)-tracked scintillation dosimeter in detecting source positional errors of IVD in HDR brachytherapy treatment. MATERIALS AND METHODS: Two different scintillator dosimeter prototypes were coupled to 5 degrees-of-freedom (DOF) EM sensors read by an Aurora V3 system. The scintillators used were a 0.3 × 0.4 × 0.4 mm3 ZnSe:O and a BCF-60 plastic scintillator of 0.5 mm diameter and 2.0 mm in length (Saint-Gobain Crystals). The sensors were placed at the dosimeter's tip at 20.0 mm from the scintillator. The EM sampling rate was 40/s while the scintillator signal was sampled at 100 000/s using two photomultiplier tubes from Hamamatsu (series H10722) connected to a data acquisition board. A high-pass filter and a low-pass filter were used to separate the light signal into two different channels. All measurements were performed with an afterloader unit (Flexitron-Elekta AB, Sweden) in full-scattered (TG43) conditions. EM tracking was further used to provide distance/angle-dependent energy correction for the ZnSe:O inorganic scintillator. For the error detection part, lateral shifts of 0.5 to 3 mm were induced by moving the source away from its planned position. Indexer length (longitudinal) errors between 0.5 to 10 mm were also introduced. The measured dose rate difference was converted to a shift distance, with and without using the positional information from the EM sensor. RESULTS: The inorganic scintillator had both a signal-to-noise-ratio (SNR) and signal-to-background-ratio (SBR) close to 70 times higher than those of the plastic scintillator. The mean absolute difference from the dose measurement to the dose calculated with TG-43U1 was 1.5% ±0.7%. The mean absolute error for BCF-60 detector was 1.7% ± 1.2 % $\pm 1.2\%$ when compared to TG-43 calculations formalism. With the inorganic scintillator and EM tracking, a maximum area under the curve (AUC) gain of 24.0% was obtained for a 0.5-mm lateral shift when using the EMT data with the ZnSe:O. Lower AUC gains were obtained for a 3-mm lateral shifts with both scintillators. For the plastic scintillator, the highest gain from using EM tracking information occurred for a 0.5-mm lateral shift at 20 mm from the source. The maximal gain (17.4%) for longitudinal errors was found at the smallest shifts (0.5 mm). CONCLUSIONS: This work demonstrates that integrating EM tracking to in vivo scintillation dosimeters enables the detection of smaller shifts, by decreasing the dosimeter positioning uncertainty. It also serves to perform position-dependent energy correction for the inorganic scintillator,providing better SNR and SBR, allowing detection of errors at greater distances from the source.


Assuntos
Braquiterapia , Dosimetria in Vivo , Humanos , Contagem de Cintilação , Dosímetros de Radiação , Fenômenos Eletromagnéticos , Radiometria , Dosagem Radioterapêutica
12.
Adv Healthc Mater ; 12(25): e2300528, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536742

RESUMO

In brachytherapy (BT), or internal radiation therapy, cancer is treated by radioactive implants. For instance, episcleral plaques (EPs) for the treatment of uveal melanoma, are designed according to generic population approximations. However, more personalized implants can enhance treatment precision through better adjustment of dose profiles to the contours of cancerous tissues. An original approach integrating biomedical imaging, 3D printing, radioactivity painting, and biomedical imaging, is developed as a workflow for the development of tumor shape-specific BT implants. First, computer-aided design plans of EP are prepared according to guidelines prescribed by the Collaborative Ocular Melanoma Study protocol. Polyetheretherketone (PEEK), a high-performance polymer suitable for permanent implants, is used to 3D-print plaques and the geometrical accuracy of the printed design is evaluated by imaging. The possibility to modulate the dose distribution in a tridimensional manner is demonstrated by painting the inner surfaces of the EPs with radioactive 103Pd, followed by dose profile measurements. The possibility to modulate dose distributions generated by these 3D-printed plaques through radioactivity painting is therefore confirmed. Ex vivo surgical tests on human eyeballs are performed as an assessment of manipulation ease. Overall, this work provides a solution for the fabrication of tumor-specific radioactive implants requiring higher dose precision.


Assuntos
Braquiterapia , Radioatividade , Neoplasias Uveais , Humanos , Braquiterapia/métodos , Radioisótopos , Paládio , Neoplasias Uveais/diagnóstico por imagem , Neoplasias Uveais/radioterapia , Neoplasias Uveais/tratamento farmacológico , Impressão Tridimensional
13.
Med Phys ; 50(8): e946-e960, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427750

RESUMO

The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for 192 Ir-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.


Assuntos
Braquiterapia , Braquiterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Relatório de Pesquisa , Método de Monte Carlo , Radiometria
14.
Phys Med Biol ; 68(11)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37059110

RESUMO

Objective.The Monte Carlo (MC) method provides a complete solution to the tissue heterogeneity effects in low-energy low-dose rate (LDR) brachytherapy. However, long computation times limit the clinical implementation of MC-based treatment planning solutions. This work aims to apply deep learning (DL) methods, specifically a model trained with MC simulations, to predict accurate dose to medium in medium (DM,M) distributions in LDR prostate brachytherapy.Approach.To train the DL model, 2369 single-seed configurations, corresponding to 44 prostate patient plans, were used. These patients underwent LDR brachytherapy treatments in which125I SelectSeed sources were implanted. For each seed configuration, the patient geometry, the MC dose volume and the single-seed plan volume were used to train a 3D Unet convolutional neural network. Previous knowledge was included in the network as anr2kernel related to the first-order dose dependency in brachytherapy. MC and DL dose distributions were compared through the dose maps, isodose lines, and dose-volume histograms. Features enclosed in the model were visualized.Main results.Model features started from the symmetrical kernel and finalized with an anisotropic representation that considered the patient organs and their interfaces, the source position, and the low- and high-dose regions. For a full prostate patient, small differences were seen below the 20% isodose line. When comparing DL-based and MC-based calculations, the predicted CTVD90metric had an average difference of -0.1%. Average differences for OARs were -1.3%, 0.07%, and 4.9% for the rectumD2cc, the bladderD2cc, and the urethraD0.1cc. The model took 1.8 ms to predict a complete 3DDM,Mvolume (1.18 M voxels).Significance.The proposed DL model stands for a simple and fast engine which includes prior physics knowledge of the problem. Such an engine considers the anisotropy of a brachytherapy source and the patient tissue composition.


Assuntos
Braquiterapia , Aprendizado Profundo , Masculino , Humanos , Braquiterapia/métodos , Dosagem Radioterapêutica , Próstata , Próteses e Implantes , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos
15.
Phys Med ; 107: 102516, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36804693

RESUMO

PURPOSE: This work has the purpose of validating the Monte Carlo toolkit TOol for PArticle Simulation (TOPAS) for low-dose-rate (LDR) brachytherapy uses. METHODS AND MATERIALS: Simulations of 12 LDR sources and 2 COMS eye plaques (10 mm and 20 mm in diameter) and comparisons with published reference data from the Carleton Laboratory for Radiotherapy Physics (CLRP), the TG-43 consensus data and the TG-129 consensus data were performed. Sources from the IROC Houston Source Registry were modeled. The OncoSeed 6711 and the SelectSeed 130.002 were also modeled for historical reasons. For each source, the dose rate constant, the radial dose function and the anisotropy functions at 0.5, 1 and 5 cm were extracted. For the eye plaques (loaded with 125I sources), dose distribution maps, dose profiles along the central axis and transverse axis were calculated. RESULTS: Dose rate constants for 11 of the 12 sources are within 4% of the consensus data and within 2% of the CLRP data. The radial dose functions and anisotropy functions are mostly within 2% of the CLRP data. In average, 92% of all voxels are within 1% of the CLRP data for the eye plaques dose distributions. The dose profiles are within 0.5% (central axis) and 1% (transverse axis) of the reference data. CONCLUSION: The TOPAS MC toolkit was validated for LDR brachytherapy applications. Single-seed and multi-seed results agree with the published reference data. TOPAS has several benefits such as a simplified approach to MC simulations and an accessible brachytherapy package including comprehensive learning resources.


Assuntos
Braquiterapia , Braquiterapia/métodos , Simulação por Computador , Método de Monte Carlo , Anisotropia , Consenso , Dosagem Radioterapêutica , Radiometria/métodos
16.
Med Phys ; 50 Suppl 1: 21-26, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36773303

RESUMO

While brachytherapy is the oldest form of radiation therapy, it is also a very exciting field from both physics and clinical perspectives. From the physics standpoint, brachytherapy dosimetry is largely being governed by the inverse-square law, leading to an unparalleled dose deposition kernel (dose emitted by a seed or single dwell position), even compared to proton or heavy-ion beamlets. There is slightly more dose beyond the central deposition point, but comparatively very little prior to it, that is, little or no entrance dose! It is easy to sum multiple dwell positions that cover a tumor, and the intensity can be modulated quite effectively using dwell times. From a clinical perspective, what sets brachytherapy apart from other intraoperative modalities (e.g., laser, radiofrequency, cryogenic) is our ability to precisely calculate the energy deposited across the relevant patient geometry, anticipate the effect from known dose-outcome relationships, and deliver that energy with exquisite control and selectively to the target volume while sparing organs at risks. This targeting ability has improved substantially over the last two decades. It is built upon key foundational elements, many of which stem from the research and development within our medical physics community. This article provides an overview of these elements that combine to make brachytherapy a successful and developing radiotherapy modality.


Assuntos
Braquiterapia , Humanos , Dosagem Radioterapêutica , Radiometria , Planejamento da Radioterapia Assistida por Computador
17.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679681

RESUMO

The interest in fiber Bragg gratings dosimeters for radiotherapy dosimetry lies in their (i) submillimeter size, (ii) multi-points dose measurements, and (iii) customizable spatial resolution. However, since the radiation measurement relies on the thermal expansion of the surrounding polymer coating, such sensors are strongly temperature dependent, which needs to be accounted for; otherwise, the errors on measurements can be higher than the measurements themselves. In this paper, we test and compare four techniques for temperature compensation: two types of dual grating techniques using different coatings, a pre-irradiation and post-irradiation temperature drift technique, which is used for calorimetry, and finally, we developed a real-time interpolated temperature gradient for the multi-points dosimetry technique. We show that, over these four tested techniques, the last one outperforms the others and allows for real-time temperature correction when an array of 13 fiber Bragg gratings spatially extending over the irradiation zone is used. For a 20 Gy irradiation, this technique reduces the measurement errors from 200% to about 10%, making it suitable for a radiotherapy dose range. Temperature correction for medical low-dose range dosimetry is a first in our field and is essential for clinical FBG dosimetry applications.


Assuntos
Dosímetros de Radiação , Radiometria , Temperatura , Radiometria/métodos , Doses de Radiação , Polímeros
18.
Z Med Phys ; 33(4): 511-528, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36509574

RESUMO

PURPOSE: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. METHODS AND MATERIALS: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. RESULTS: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (Λ). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within ±1%(±0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within ±1%(±0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within ±0.2% for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differences. Dose-volume histograms were in agreement with the reference data. CONCLUSIONS: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.


Assuntos
Braquiterapia , Braquiterapia/métodos , Benchmarking , Dosagem Radioterapêutica , Simulação por Computador , Método de Monte Carlo , Radiometria/métodos
19.
Phys Med Biol ; 68(1)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36541552

RESUMO

Objective.This study aimed at investigating through Monte Carlo simulations the limitations of a novel hybrid Cerenkov-scintillation detector and the associated method for irradiation angle measurements.Approach.Using Monte Carlo simulations, previous experimental irradiations of the hybrid detector with a linear accelerator were replicated to evaluate its general performances and limitations. Cerenkov angular calibration curves and irradiation angle measurements were then compared. Furthermore, the impact of the Cerenkov light energy dependency on the detector accuracy was investigated using the energy spectra of electrons travelling through the detector.Main results.Monte Carlo simulations were found to be in good agreement with experimental values. The irradiation angle absolute mean error was found to be less than what was obtained experimentally, with a maximum value of 1.12° for the 9 MeV beam. A 0.4% increase of the ratio of electrons having an energy below 1 MeV to the total electrons was found to impact the Cerenkov light intensity collected as a function of the incident angle. The effect of the Cerenkov intensity variation on the measured angle was determined to vary according to the slope of the angular calibration curve. While the contribution of scattered electrons with a lower energy affects the detector accuracy, the greatest discrepancies result from the limitations of the calculation method and the calibration curve itself.Significance.A precise knowledge of the limitations of the hybrid detector and the irradiation angle calculation method is crucial for a clinical implementation. Moreover, the simulations performed in this study also corroborate hypotheses made regarding the relations between multiple Cerenkov dependencies and observations from the experimental measurements.


Assuntos
Luz , Radiometria , Método de Monte Carlo , Radiometria/métodos
20.
J Contemp Brachytherapy ; 14(4): 379-389, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36199940

RESUMO

Purpose: Recently, our GPU-based multi-criteria optimization (gMCO) algorithm has been integrated in a graphical user interface (gMCO-GUI) that allows real-time plan navigation through a gMCO-generated set of Pareto-optimal plans for high-dose-rate (HDR) brachytherapy. This work reports on the commissioning of the gMCO algorithm into clinical workflow. Material and methods: Our MCO workflow was validated against Oncentra Prostate v. 4.2.2 (OcP) and Oncentra Brachy v. 4.6.0 (OcB). 40 HDR prostate brachytherapy patients (20 with OcP and 20 with OcB) were retrospectively re-planned with gMCO algorithm by generating 2,000 Pareto-optimal plans. A single gMCO treatment plan was exported using gMCO-GUI plan navigation tools. The optimized dwell positions and dwell times of gMCO plans were exported via DICOM RTPLAN files to OcP/OcB, where final dosimetry was calculated. TG43 implementation in gMCO was validated against the consensus data of flexisource. Five analytical shapes were used as the ground truth for volume calculations. Dose-volume histogram (DVH) curves generated by gMCO were compared with the ones generated by OcP/OcB. 3D dose distributions (and isodose lines) were validated against OcP/OcB using dice similarity coefficient (DSC), 95% undirected Hausdorff distance (95% HD), and γ analysis. Results: Differences between -0.4% and 0.3% were observed between gMCO calculated dose rates and the flexisource consensus data. gMCO volumes were within ±2% agreement in 3/5 volumes (deviations within -2.9% and 0.1%). For 9 key DVH indices, the differences between gMCO and OcP/OcB were within ±1.2%. Regarding the accuracy of key isodose lines, the mean DSC was greater than 0.98, and the mean 95% HD was below 0.4 mm. The fraction of voxels with γ ≤ 1 was greater than 99% for all cases with 1%/1 mm threshold. Conclusions: The GPU-based MCO workflow was successfully integrated into the clinical workflow and validated against OcP and OcB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...